Simultaneous Localisation And Mapping (SLAM) in a nutshell

By Antoine Billy

Autonomous Systems Perception and Interaction Control

What is SLAM ?

In robotic mapping and navigation, simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. Over the last 30 years, SLAM algorithms are employed in self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers, newer domestic robots and even inside the human body.

> Do we need SLAM ? Is SLAM solved ?

A robot

position orientation velocity sensor biases calibration

points landmarks obstacles graph

A map

A map

Path planning Visualization Errors limitation (loop closure) Prior Map GPS / Indoor applications

The classical edge (1986-2004)

Probabilistic formulations: Extended Kalman filters Particle Filters Maximum Likelihood estimation

The algorithmic-analysis edge (2004-2015)

Fundamental properties: Observability Convergence Consistency Open source

The robust perception edge (2016-20??)

New requirements: Robust performances High-level understanding Resource awareness Task-driven perception Deep learning

The front-end and back-end in a typical SLAM system

Back-end: Maximum a posteriori estimation (MAP)

ORB-SLAM

Robustness

Main issues: Many failures (algorithmic or hardware) Data association Static landmarks Harsh environments (underwater)

Scalability

Larger areas: Unbounded factor graph Quadratically growing

Metric Map Models

Different representation models: Point Cloud Parameterized primitive Sweep representation Constructive solid geometry Semantic maps

Local minimum failures

New Theoretical tools

Factor graph optimization: maximum likelihood estimation iterative nonlinear optimization convex relaxation suitable initialization resilience to outliers

Active SLAM

Leverage a robot's motion to improve the mapping and localization results. Random exploration. Artificial Intelligence? Theory of Optimal Experimental Design (TOED)

New sensors

Unconventional sensors: Dominated by LiDAR and cameras Light-field cameras Event-based cameras Inspired by animals

Deep learning

Regress the inter-frame pose btw 2 images 6DoF estimation Depth of a scene from single camera

Do we need SLAM? yes Is SLAM solved? Not yet